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Non-converging optimization
What happens in training beyond the stopping point?
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(Q1) How can we define and study the generalization properties of

a non-converging learning algorithm?

(Q2) Can the statistical/ergodic properties of the algorithm predict

its generalization performance?
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where
» w; € M are the weights at time t € Z™*
> Sis a set of ntraining samples z, - - - , z, iid according to D
> Ls(w) = (1/n) ) ,cst(z, w)is the sample average of the
loss £(-, -).
> VLg(w,) is the estimate of the weight space gradient of Lg.

In general, deterministic/stochastic nonlinear dynamics on
compact set. No guarantee of convergence to fixed points. There
exist multiple invariant, ergodic distributions on weight space, M.



Convergence of loss time-averages

Assumption 1: For almost every wy and every z, time-
average of {(z, -) converges to a constant (£,) s, independent
of wg.
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Orbits of four different initializations of a VGG16 training with SGD.
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Assumption allows us to extend algorithmic stability to statistical
algorithmic stability (SAS).
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Classical algorithmic stability [Bousquet and Elisseeff 2002]:

B :=supsup [{(z, wg) — U(z, wg/)l.
z S8

Statistical Algorithmic Stability (SAS): We say an algo-
rithm is SAS with coefficient {3 if

B :=supsupl|(l;)s— (€;)sl
z S8

The higher the value of 3, the lower the statistical stability. Unlike
classical algorithmic stability, SAS

» applies to non-converging learning algorithms
> is constant on network function/parameter space



Numerical approximation of (3 for SGD on VGG16 model

trained on CIFAR10
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