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Non-converging optimization
What happens in training beyond the stopping point?

Courtesy: [Lyu Li Arora 2022]. Recent interest [Kong and Tao 2021,
Cohen et al 2021, Lobacheva et al 2021, Zhang Li Sra Jadbabaie 2022]
in non-converging training algorithms

(Q1) How can we define and study the generalization properties of
a non-converging learning algorithm?

(Q2) Can the statistical/ergodic properties of the algorithm predict
its generalization performance?
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SGD/GD dynamics on weight space:

wt+1 = wt − η∇̂LS(wt),

where
▶ wt ∈ M are the weights at time t ∈ Z+

▶ S is a set of n training samples z1, · · · , zn iid according to D

▶ LS(w) = (1/n)
∑

z∈S ℓ(z,w) is the sample average of the
loss ℓ(·, ·).

▶ ∇̂LS(wt) is the estimate of the weight space gradient of LS.

In general, deterministic/stochastic nonlinear dynamics on
compact set. No guarantee of convergence to fixed points. There
exist multiple invariant, ergodic distributions on weight space, M.
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Convergence of loss time-averages

Assumption 1: For almost every w0 and every z, time-
average of ℓ(z, ·) converges to a constant ⟨ℓz⟩S, independent
of w0.

Orbits of four different initializations of a VGG16 training with SGD.

Assumption allows us to extend algorithmic stability to statistical
algorithmic stability (SAS).
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Statistical Algorithmic Stability

Classical algorithmic stability [Bousquet and Elisseeff 2002]:

β := sup
z

sup
S,S ′

|ℓ(z,w∗
S) − ℓ(z,w∗

S ′)|.

Statistical Algorithmic Stability (SAS): We say an algo-
rithm is SAS with coefficient β if

β := sup
z

sup
S,S ′

|⟨ℓz⟩S − ⟨ℓz⟩S ′ |.

The higher the value of β, the lower the statistical stability. Unlike
classical algorithmic stability, SAS
▶ applies to non-converging learning algorithms
▶ is constant on network function/parameter space
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Numerical approximation of β for SGD on VGG16 model
trained on CIFAR10

Noisy CIFAR10 labels.
Anticlockwise: Sample mean over
45 (S,S ′) pairs, with error bars, of
time-averaged test loss difference.
Lower bound on β with error bars
computed as sample mean. Test
loss vs. time (epoch).
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Generalization of a non-converging algorithm

▶ Training error, R̂S := (1/n)
∑

z∈S⟨ℓz⟩S

▶ Test/generalization error, RS := Ez∼D⟨ℓz⟩S.

Theorem 1 (SAS implies generalization) For an algorithm
with SAS coefficient β and large # of samples n, the gener-
alization gap = RS − R̂S = O(β

√
n) with high probability.

Smaller β ≡ more SAS =⇒ better generalization

https://arxiv.org/abs/2208.07951
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Predicting generalization gap from timeseries data

Theorem 2 (Slower convergence of loss statistics implies
larger β) Let λ be the slowest mixing rate of the transition
operators on loss space. Then, the corresponding training
algorithm with n samples has SAS coefficient

β = O(
1
n

LD

1 − λ
),

where LD = supw Lip(∇ℓ(·,w))

▶ use perturbation theory of Markov operators to explain SAS
▶ as a proxy for the mixing of the loss process, we use

auto-correlations in the loss timeseries.
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